
Girls Who Code At Home
Meteor Catcher Game: Part 5

Add a Randomizer

2

Activity Overview
In this final part, we will explore one way to make your game more
challenging - and more fun! You will learn how to use the
random() function to add complexity to the behavior of your
meteor. Finally, customize your project by trying out one or more of
our extensions. Click here to preview what you will learn by the end
of the activity.

PART 5
Add a

Randomizer

Add
randomness to

make your
game more
challenging

and fun!

PART 2
Draw the
Meteor

Build a basic
shape to

represent your
meteor update

the style,
location, size,
and color of
your meteor.

PART 3
Make the
Meteor
Fall

Simulate
motion for your
meteor using

variables

PART 4
Catch the
Meteor

Build a catcher
that follows

your mouse to
catch the

falling meteors.

PART 1
Planning +
Intro to
p5.js

Identify the
parts of a

game and learn
about the
basics of

program flow in
p5.js

Materials
➔ p5.js Online Editor
➔ Meteor Catcher Game Sample Project
➔ Meteor Catcher Game Part 5 Reference

Guide

Learning Goals
By the end of this activity you will be able to...

❏ explain how the random() function can be
used to increase or decrease a game’s
challenge.

You should have already completed Part 1, Part 2,
Part 3, and Part 4 of the Meteor Catcher Game Series

before embarking on this activity.

You can also follow along with Part 6 in the
Meteor Catcher Game video tutorials!

https://p5js.org/reference/#/p5/random
https://editor.p5js.org/GWCEducation/embed/NFjNmEEqP
https://editor.p5js.org/
https://editor.p5js.org/GWCEducation/present/NFjNmEEqP
https://drive.google.com/file/d/1AY0l-2pddX1ExjWcU5DHGlYbiQN0ka6J/view?usp=sharing
https://drive.google.com/file/d/1AY0l-2pddX1ExjWcU5DHGlYbiQN0ka6J/view?usp=sharing
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-1.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-2-1.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-3.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-4.pdf
https://www.youtube.com/playlist?list=PLxuXeImzB_r0WKEWpWFPDVI0p3zx9BKQm

3

Women in Tech Spotlight: Lisette Titre-Montgomery

Watch this video to learn more about Lisette and some of the challenges she faced working on various
games and how she overcame them.

Want to learn more about Lisette and her work?
➔ Check out her personal website to learn more about some of her various works and projects.
➔ Read this article about Lisette’s background and how she came to the gaming industry.
➔ Look up Lisette’s profile to see some highlights of her career and her advice for students

interested in starting in the gaming industry!

Reflect
Being a computer scientist is more than just being great at coding. Take some time to reflect on how
Lisette and her work relates to the strengths that great computer scientists focus on building - bravery,
resilience, creativity, and purpose.

Share your responses with a family member or friend. Encourage others to read more about Lisette
to join in the discussion!

When you jam out to moves on Dance Central or create characters on The
Sims, do you ever wonder about the technology that took you there?
Lisette Titre-Montgomery works as an engineer and designer behind the
most popular games on the market. With over seventeen years of
experience in the game industry and thirteen shipped titles, she has
successfully bridged the gap between the video gamer and the developer.

Lisette also dedicates her time to bringing more diversity into the gaming
industry through mentoring and inclusive hiring initiatives with The White
House. She continues to be an advocate for game based curriculums in
K-12 education to engage students in STEAM education and careers with
a program called Gameheads, based in Oakland, CA.

BRAVERY

Lisette had never worked in the gaming industry until her first job. What steps
did she take to succeed in her role?

Image Source: Lisette
Titre-Montgomery

https://youtu.be/b5uY1BP0jYQ
http://www.lisettetitre.com/
https://www.blackpast.org/african-american-history/titre-lisette-1977/
https://womeninstem.shareyourroad.com/profile/33502567
https://gameheadsoakland.org/
http://www.lisettetitre.com/
http://www.lisettetitre.com/

4

Step 1: Reflect on your game’s challenge (2-4 mins)
Right now, we have all the critical parts of our game covered: the components, core mechanic, game
and space. But the game isn’t very fun yet, mostly because it is not challenging enough. Finding the
right difficulty level is key for game designers. One tool you can use to increase difficulty (and there are
many) is to include an element of randomness. This prevents the player from anticipating what will
come next by surprising them with new information that they must adapt to.

Where can we add randomness to the game to make it more challenging? Take one minute to think
about it, then compare your ideas to the ones below.

Don’t forget to check your ideas with the Reference Guide on pg 2.

JAVASCRIPT DESCRIPTION

random(min, max); ➔ random: The function name.
➔ (): We use parentheses to tell our program that it needs to

call the function. Sometimes we include parameters or
inputs in the function inside our parentheses.

➔ min: The lower end of the random range you want that
includes this number as an option.

➔ max: The higher end of the random range you want that
excludes this number as an option.

➔ ;: All lines of code in JavaScript must end with a semicolon.

Step 2: Explore the random() function (5 mins)
We can use the random() function to add randomness to our code. This function returns, or outputs, a
random floating point number between a specified range of values. Floating point means the number
might contain a decimal. This allows for a much larger spectrum of numbers. Explore this example
sketch where each mouse click inside the canvas generates a random value for the red, green, and blue
values in the fill() function.

Let’s take a look at the syntax of the random() function.

https://editor.p5js.org/GWCEducation/embed/IHsmv3Zb6
https://editor.p5js.org/GWCEducation/embed/IHsmv3Zb6

5

Step 4: Add your code (5-8 mins)
Now we need to translate your pseudocode into actual code. All of the code we write will go inside both
conditional statements underneath the existing statement. Right now, we are only redrawing the meteor
to the top of the screen if it intersects with the catcher or bottom wall. Adding these statements in the
conditional will randomize the location, speed, and size of the new meteor.

Locate the first conditional statement. Add these new lines
of code under meteorY = 0;:
❏ Write the line of code that randomizes the meteor

starting location to a value between 0 and 400.

❏ Write the line of code that randomizes the meteor’s
speed to a value between 0.5 and 4.

❏ Write the line of code that randomizes the meteor’s
size to a value between 10 and 30.

Locate the second conditional statement.
❏ Copy the statements you just wrote for the first

conditional, and copy them under meteorY = 0; in the
second conditional.

You may have noticed the lines of
code inside the conditionals look
the same! That’s true! You could
combine these conditionals with
the logical operator “or” - ||. You
could also combine them by
nesting them together. We opted to
separate them to make the
extensions a bit less confusing. If
you would like to combine these
conditionals, you are welcome to!

Step 3: Update your pseudocode (2-4 mins)
Before we add in our new lines of code, let’s brainstorm what we want to happen in human language first.
Write pseudocode for each random() function. Try to be as specific as possible and use the value ranges
specified. When you are done, check your answer below:

➔ Meteor starting location. Value range: 0 to 400
➔ Meteor speed. Value range: 0.5 to 4
➔ Meteor size. Value range: 10 to 30

Don’t forget to check your code with the Reference Guide on pg 2.

https://p5js.org/examples/control-logical-operators.html

6

Step 5: Test your code (5-10 mins)
Let’s test what we have written so far to make sure our program runs the way we want it to. Click the
play button to run your sketch.

Run your code and test the following:
❏ Try to make your meteor and catcher intersect. When they intersect, the current meteor

should disappear and a “new” meteor should appear at a random x position, with a new size,
and new speed.

❏ Wait for the meteor to intersect with the bottom of your canvas. When they intersect, the
current meteor should disappear and a “new” meteor should appear at a random x position,
with a new size, and new speed.

Not working the way you want it to? Try these debugging tips:

➔ Is your code inside the correct curly brackets?
➔ Do you have semicolons at the end of each line of code?
➔ Are your functions in the correct location? Remember that order matters in program flow!
➔ Are the parameters in your random() function correct?

Click here to run the example sketch.

Don’t forget to check your code with the Reference Guide on pg 3.

https://editor.p5js.org/GWCEducation/embed/NFjNmEEqP

7

Step 7: Test your code and receive feedback (5-10 mins)
You have unlocked a major milestone: you finished building the core part of your project!
Before moving forward, we will test your code to make sure your game is working properly.
This is also a great opportunity to get feedback on your game from friends and family. Share
your project and this checklist with your tester!

Click here to run the
example sketch.

Debugging Tips
If your sketch isn’t working the way you want it to, check the console first to see if there is an error. You
can try to fix your code or try googling to find the answer. You can also review this resource from p5.js.

➔ Is your code inside the correct curly brackets?
➔ Do you have semicolons at the end of each line of code?
➔ Did you spell the variable and function names correctly?
➔ Are your functions in the correct location and sequence? Remember that order matters in

program flow!
➔ Are the parameter values in your functions correct? Specifically the dist() and random()

functions?
➔ Print values to the console using print() then check any if statements.

Checklist
Run your sketch, then use the checklist below to test your code:
❏ You have a 400 by 400 canvas. The background is filled with the

color of your choice.

❏ Your game begins with a meteor (i.e. an ellipse) falling slowly
from the center of the top of the canvas. The meteor has no
outline and is filled with a color of your choice.

❏ There is a catcher (i.e. an ellipse) that is white in color and
semi-transparent. The center of the catcher follows the
movement of your mouse.

❏ Your program prints the distance between the meteor and
catcher to the console.

❏ If the meteor and the catcher intersect, the game updates to draw a new meteor.

❏ If the meteor and the bottom of the canvas intersect, the game updates to draw a new meteor.

❏ New meteors begin at the top of the canvas at a random location on the x axis with a random
speed and random size.

You did it! You finished building the foundation for your project. In the next part of
this activity you will have the chance to personalize your project further with some
optional extensions.

https://editor.p5js.org/GWCEducation/embed/NFjNmEEqP
https://p5js.org/learn/debugging.html

8

Step 8: Extensions (5-45 mins)

Extension Resources
Below are some helpful resources we used
to create this Extension. These will help you
get started, but remember that there are lots
more resources only a search engine away!
➔ p5.js Web Editor: Uploading Media

Files - p5.js Tutorial by The Coding
Train (start around 0:59)

➔ Load and Display an Image Example
from p5.js. Note: Disregard the text
that says To run this example locally,
you will need an image file, and a
running local server. This does not
apply to the online editor.

➔ loadImage()
➔ image()
➔ imageMode()
➔ background()

Extension 1: Change the story with graphics (15-45 mins)

Right now, the game is about space and meteors - but it doesn’t have to be! You can alter the narrative
of the game by adding new graphics or images. In game design, this is referred to as skinning. The skin
of a game is the appearance of the components and background of the game. You can reskin the game
without changing the mechanics, but it can vastly change the meaning of the game and how the player
feels about it.

Click here to see an example
sketch of this extension

❏ Find .png image files with a transparent
background. You may need to resize them in
Google Draw, then export them as a .png image
file.

❏ Upload your .png files to your sketch.

❏ Declare a variable to store the image file.

❏ Initialize each image variable in setup() with
the loadImage() function.

❏ Draw the images to the screen using the
image() function in draw(). Be sure to use the
correct x and y position variables.

❏ Pass the background image variable through the
background() function.

In this extension, try replacing one or more shapes and
the background with images. Here are the basic steps
you need to complete this extension:

Here is a link to our solution code for this extension. We recommend trying it yourself first and using
this resource when you get really stuck or want to check your work.

https://youtu.be/rO6M5hj0V-o?t=59
https://youtu.be/rO6M5hj0V-o?t=59
https://p5js.org/examples/image-load-and-display-image.html
https://p5js.org/reference/#/p5/loadImage
https://p5js.org/reference/#/p5/image
https://p5js.org/reference/#/p5/imageMode
https://p5js.org/reference/#/p5/background
https://editor.p5js.org/GWCEducation/embed/ulfzg99ts
https://editor.p5js.org/GWCEducation/sketches/ulfzg99ts

9

Extension Resources
Below are some helpful resources we used
to create this Extension. These will help you
get started, but remember that there are
lots more resources only a search engine
away!
➔ Increment Decrement Example

from p5.js
➔ Words Example from p5.js
➔ textSize()
➔ text(): You can combine strings (i.e.

a series of text characters) with
variables in the text() function.

➔ textAlign()
➔ string

Extension 2: Track the score (5-15 mins)

At some point in the tutorial, you may have asked yourself, “But what about points?!” Keeping track of a
player’s score isn’t necessary to make it a game, but it is one way to give players immediate feedback
about their gameplay. You can create a variable to keep track of the score, then add or increment the
value of that variable each time the player earns points. You could also have the player start with a
score, then subtract or decrement a value when they take a specific action.

Click here to see an example
sketch of this extension

In this extension, try creating your own simple scoring
system, then drawing the score to the screen as text. Here
are the basic steps you need to complete this extension:

❏ Create a variable to keep track of the score and
set it to zero. Hint: Where do you think you'd want
to place this variable if you wanted to access it
anywhere in your sketch?

❏ Increment this variable if the meteor and catcher
intersect. Hint: Where in your code do you check to
see if the meteor and catcher intersect?

❏ Draw the value of the variable to the screen as
text.

Here is a link to our solution code for this extension. We recommend trying it yourself first and using
this resource when you get really stuck or want to check your work.

https://p5js.org/examples/math-increment-decrement.html
https://p5js.org/examples/typography-words.html
https://p5js.org/reference/#/p5/textSize
https://p5js.org/reference/#/p5/text
https://p5js.org/reference/#/p5/string
https://p5js.org/reference/#/p5/textAlign
https://p5js.org/reference/#/p5/string
https://editor.p5js.org/GWCEducation/embed/dlHvZBWbF
https://editor.p5js.org/GWCEducation/sketches/dlHvZBWbF

10

Extension Resources
Below are some helpful resources we used to create
this Extension. These will help you get started, but
remember that there are lots more resources only a
search engine away!
➔ Function Basics - p5.js Tutorial video from

The Coding Train
➔ function
➔ mouseIsPressed
➔ Increment Decrement Example from p5.js
➔ Words Example from p5.js
➔ textSize()
➔ text(): You can combine strings (i.e. a series of

text characters) with variables in the text()
function.

➔ textAlign()
➔ string

Extension 3: Add a win state (10-20 mins)

Whether individual or collaborative, games often have a win state. Win states occur when players have
successfully overcome the main challenge of the game, like the highest number of goals or most gold
coins in 30 seconds or the completion a space mission. There are many different ways you can win a
game.

Click here to see an example
sketch of this extension

Here are the basic steps you need to complete
this extension:

❏ Create a function to restart the game by
resetting the position, score, and speed
variables to their original values.

❏ Create a conditional to test if the score
is equal to the number of points needed
to win.

❏ Write a message to the screen alerting
the player they have won and how to
restart the game.

❏ Create a second conditional inside the
first to test if the mouse is pressed. Call
the restart function inside of it.

Here is a link to our solution code for this extension. We recommend trying it yourself first and using
this resource when you get really stuck or want to check your work.

In this extension, create a system to test and alert a player if they have won, then reset the game so they
can play again. Before you get started, think about what “winning” means in your game. For example, is it
the amount of times played, the number of points, etc. In the extension example here, we use the number
of points scored to determine if a player has won. If they have won and press the mouse, the game
restarts. This extension requires you to create a function of your very own, so if you want to learn more
about defining functions this is a good opportunity!

https://youtu.be/wRHAitGzBrg
https://p5js.org/reference/#/p5/function
https://p5js.org/reference/#/p5/mouseIsPressed
https://p5js.org/examples/math-increment-decrement.html
https://p5js.org/examples/typography-words.html
https://p5js.org/reference/#/p5/textSize
https://p5js.org/reference/#/p5/text
https://p5js.org/reference/#/p5/string
https://p5js.org/reference/#/p5/textAlign
https://p5js.org/reference/#/p5/string
https://editor.p5js.org/GWCEducation/embed/O01LFc-TF
https://editor.p5js.org/GWCEducation/sketches/O01LFc-TF
https://editor.p5js.org/GWCEducation/embed/O01LFc-TF

11

Extension 4: Add more meteors (25-40 mins)

In the last part of the Building phase, we explored ways we could make the game more challenging by
randomizing properties of the meteor. Another way to make the game more challenging is to make
more meteors!

Click here to see an example sketch
of this extension

There are a couple of ways you can approach this.

➔ Approach #1: Create new variables for a second meteor. Then duplicate all the code you wrote for
the first meteor, but updating it with variables for the second meteor. If you think this sounds
tedious, you are correct! It will work, but your code will be long and cumbersome.

➔ Approach #2: Use arrays and for loops to add more meteors! Arrays allow you to store an ordered
list of elements in a single variable. That is, instead of just storing one value for a meteor’s
diameter, you can store 10, or 15, or 20 or 300 - and you can access them all using the index
number. For loops allow you to loop through a section of code multiple times based on a
condition. You could say that for loops and arrays are BFFs because you can use a for loop to
iterate or cycle through an array. See the Extension Resources below to learn more.

Note: We also included a score
tracker so you can see when a
meteor has intersected, but you are
not required to do that for this
extension.

In this extension, try using arrays and for loops to make four more meteors for a total of five. Arrays
will allow you to store the meteorX variables you need for all the meteors in one place. For loops will
allow you to cycle through each of those variables and use it or perform an action on it.

https://editor.p5js.org/GWCEducation/embed/KTB-OTj3w
https://p5js.org/examples/arrays-array.html
https://p5js.org/reference/#/p5/for

12

Extension Resources
Below are some helpful resources we used to create this Extension. These will help you
get started, but remember that there are lots more resources only a search engine
away!
➔ p5.js Tutorial videos from The Coding Train

Note: some of these videos were created before the online editor was built, but it
will work the same!
◆ What is an Array?
◆ Arrays and Loops
◆ while and for loops

➔ Program Flow tutorial
➔ Iteration tutorial
➔ for If you are having trouble getting started, try using the first approach and

create a second meteor by duplicating code from the first meteor. Any time you
see a double (e.g. meteorY_1 and meteorY_2 or speed_1 and speed_2)
chances are you will need an array and a for loop to cycle through it.

Here are the basic steps you need to complete this extension:
❏ Declare arrays to store the X position of the meteor, Y position of the meteor (these

values should all be 0), the meteor diameter, the distance, and the speed.

❏ Create for loops in the setup() that will pre-populate the following arrays with initial
random values: X position, meteor diameter, and speed.

❏ Create a for loop that draws the meteors to the screen.

❏ Create a for loop that cycles through the meteors to make them fall at different speeds.

❏ Draw the catcher.

❏ Create a for loop that cycles through meteors to determine the distance between each
meteor and the catcher.

❏ Create a for loop that cycles through meteors to test if one of the meteors has
intersected with the catcher. If it has intersected, redraw that meteor to the top of the
screen at a random X position, and set a new random speed for that meteor.
Tip: You will need to add a conditional statement inside the for loop.

❏ Create a for loop that cycles through meteors to test if one of the meteors has
intersected with the bottom of the screen. If it has intersected, redraw that meteor to the
top of the screen at a random X position, and set a new random speed for that meteor.
Tip: You will need to add a conditional statement inside the for loop.

Here is a link to our solution code for this extension. We recommend trying it yourself first and
using this resource when you get really stuck or want to check your work.

Step 8: Extensions (cont.)

https://thecodingtrain.com/beginners/p5js/7.1-what-is-an-array.html
https://youtu.be/RXWO3mFuW-I
https://youtu.be/cnRD9o6odjk
https://p5js.org/learn/program-flow.html
https://p5js.org/examples/control-iteration.html
https://p5js.org/reference/#/p5/for
https://editor.p5js.org/GWCEducation/sketches/KTB-OTj3w

13

Step 9: Share Your Girls Who Code at Home Project! (5 mins)

We would love to see your work and we know others would as well. Share your game with us! Don’t forget
to tag @girlswhocode #codefromhome and we might even feature you on our account!

Stay tuned for more Girls Who Code at Home projects!

Project Link

Follow these steps to share your project:

➔ Save your project first.

➔ In the File Menu, choose the Share option in the
dropdown menu.

➔ Choose the Link option in the dropdown menu.

➔ Copy the Present Link paste it wherever you
would like to share it.

